

This action is supported by the European Institute of Innovation and Technology (EIT)

A body of the European Union

Content

- → What is Impact Measurement
- → Why is Impact Measurement Important, and so, what?
- → **How** can Environmental Impact be Measured?
- → A focus on **LCA** with a deeper dive
- → So, What at a program level?

What is Impact Measurement for start-ups?

It involves...

- Collecting data,
- → Analysing outcomes, and
- Evaluating how a startup's products, services, or operations affect various stakeholders and the broader community.

Impact measurement is...

the process of quantifying & assessing the social environmental and economic effects or changes resulting from the activities of a start-up.

Why is Impact Measurement Important for climate start-ups?

Marketing & Sales

Fundraising & Investor traction

Supply Chain, Strategy & Improvements

Legal Compliance

Why is Impact Measurement Important for climate start-ups?

Marketing & Sales

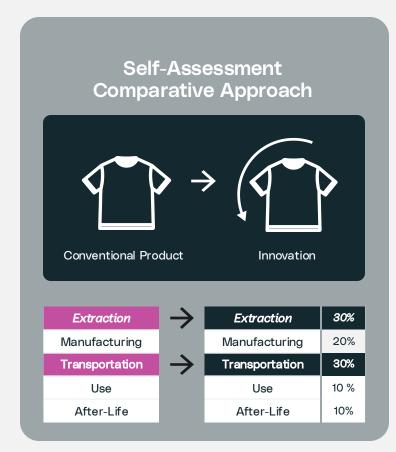
- Competitive Advantage
- Transparency & Trust

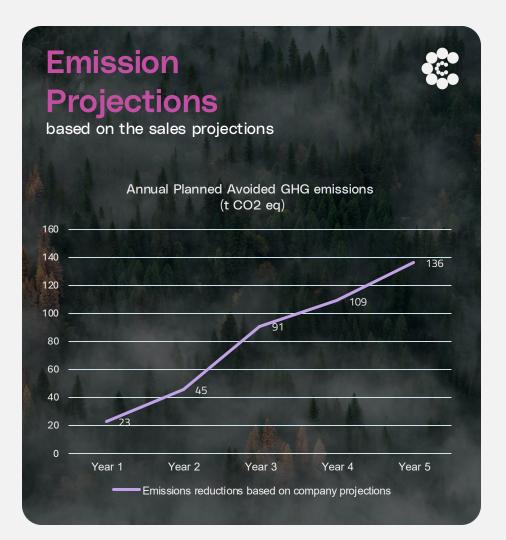
Fundraising & Investor traction

- Showcase impacts and increase investor interest

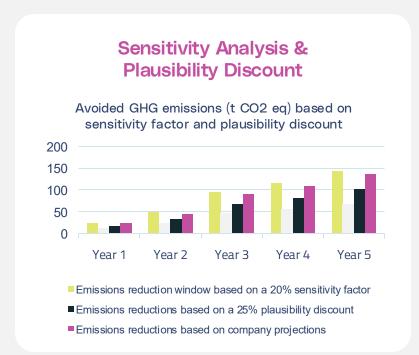
Supply Chain, Strategy & Improvements

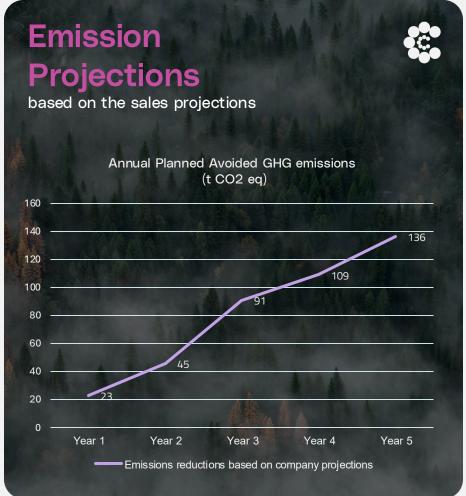
- Continuous Improvement
- Innovation & Adaptation




Legal Compliance

- Complying with sustainability regulation


So What?



So What?

- Highest emission
- 2. Sensitivity analysis
- 3. Plausibility discount

So What?

Introduction: Environmental Impact Measurement

- → There are many methodologies for measuring and/or projecting the environmental impact of a business.
- → While different methods have different strengths and limitations, there is not a 'unicorn' or perfect methodology.
- → Impact measurement and projection methodologies tend to include a unit of measure and many are governed by standards and frameworks.

What is a Unit of Measurement?

- → A unit of measure for environmental impact is used to quantify the impact of a particular environmental factor.
- → Using a single unit of measure allows us to easily compare or aggregate data.

Some common units of measure include:

Carbon Dioxide equivalent (CO₂e)

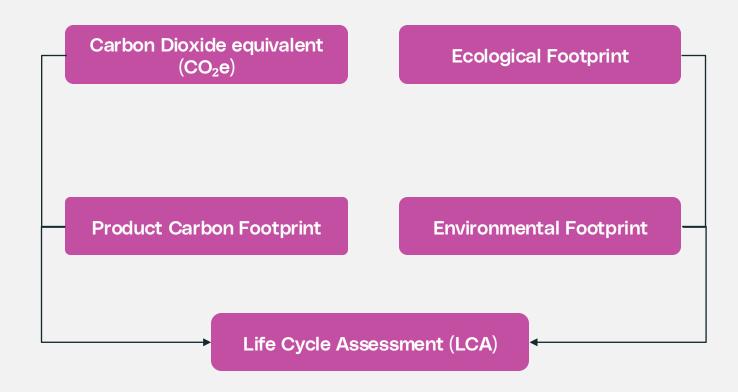
A standard unit for measuring greenhouse gas emissions.

Kilowatt-hour (kWh)

Used to measure electricity consumption or production

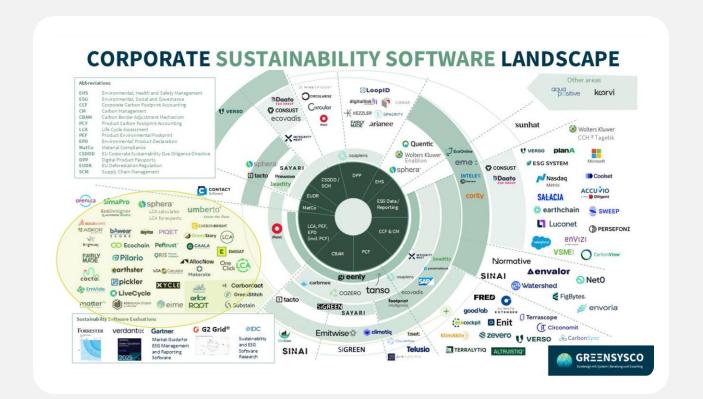
Cubic metres (m³)

Used to measure the volume of water consumed to produce goods/services


Hectares (ha)

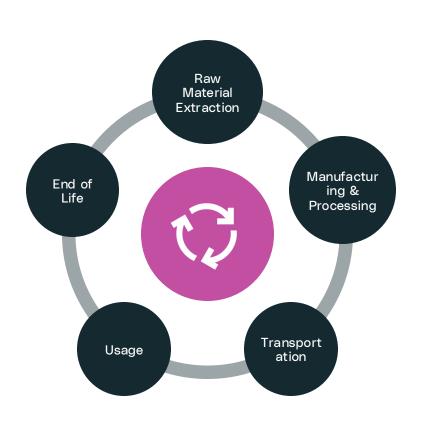
Used to quantify the amount of land required to support a particular activity

How can Environmental Impact be Measured?


Environmental Impact Labels & Methods

Where Do We Sit?

Unit of Analysis x Methods



Where Do We Sit?

Unit of Analysis x Methods

The Product Life Cycle

- → The Life Cycle Assessment (LCA) is a comprehensive methodology which takes into account the environmental impact of a product or service throughout its entire life cycle.
- → The life cycle includes five stages, this is sometimes referred to as 'from cradle to grave'.

- 1. Raw Material Extraction
- 2. Manufacturing & Processing
- 3. Transportation
- 4. Usage
- 5. End of Life

Five Stages of the Product Life Cycle

RAW MATERIAL EXTRACTION

Obtaining the raw
materials for your product
or service. This can
include activities like
mining, logging, farming,
or other processes
involved in extracting
materials required for
manufacture.

MANUFACTURING & PROCESSING

Processing and transforming the extracted materials into the final product. This can include activities such as manufacturing, shaping, assembling and packaging.

TRANSPORTATION

Transporting the product from the manufacturing facility to distribution centres, retailers and ultimately to end-users. This can include various forms of transport, such as road, rail, air and sea.

USAGE

The period in which the consumer uses the product for its intended purpose. You can consider the energy consumption and other impacts associated with the product's use.

END OF LIFE

The disposal or end-oflife of the product. This stage includes waste handling whether it is through recycling, landfill, incineration or other means.

Tip: There may be transportation inputs at multiple stages of the product life cycle

The Comparative LCA

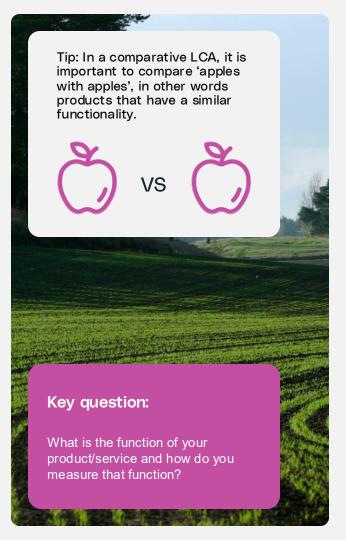
A comparative life cycle assessment (LCA) involves comparing the environmental impacts of a product or service with another similar or comparable product or service.

For innovative or more sustainable products & services, this usually involves comparing your solution with the 'status quo', market leader, or industry average.

This allows you to compare and differentiate your product from competitors.

Life Cycle Assessment

Example: Limitations of the methodology


The Life Cycle Assessment is not a 'unicorn' solution for measuring climate impact and has faced some criticism in the following areas:

- → It is not systemic: LCAs measure the environmental impact of products in isolation, without taking into consideration the implications and interactions of the wider system.
- → It doesn't take into account social implications: LCAs do not measure the social or human implications of the product or service they measure.
- → Calculations are often based on averages or samples: LCAs often rely on databases of 'industry average' data, leading to criticisms over the accuracy of the methodology.

A Deeper Dive

Step 1: Story of Your Innovation

When beginning a Life Cycle Assessment, it is important to ask some basic questions which will help to guide you through the process.

Describe the story of your innovation:

- What is the name of your solution?
- → What kind of solution is it: a product, a service or both?
- → Who is the customer or target group of your solution?

Define your comparative scenario:

Identify the product or service that you want to replace in the market.

RAW MATERIAL EXTRACTION MANUFACTURING & PROCESSING DISTRIBUTION USAGE END OF LIFE

Step 2: Inventory Analysis

- The inventory analysis phase looks at all of the inputs and outputs involved in the life cycle of a product or service.
- → You will describe of all the inputs and outputs.
- → Depending on your product or service, this phase can be complex, and require a large amount of data.
- This phase is usually the most time consuming element of performing an LCA.

Key question:

What data do we need?

Key question:

Where can I find the data?

Step 2: Inventory Analysis Life Cycle of Your Innovation

Image based on source: **Ecochain**

https://ecochain.com/blog/life-cycle-assessment-lca-guide/

Raw Material Extraction	Distribution 1	Manufacturing	Distribution 2	Use of Product	Distribution 3	End of Life
Obtaining seeds, planting, fertilizing, irrigating, pest protection, and harvesting the cotton.	Transport of cotton from the field to the processing site.	Processing the cotton, spinning, weaving, washing, dyeing, and sewing the t-shirt. + t-shirt is packaged and transported to stores.	Transport from the factory to points of sale (distributors, retailers) mainly by plane + Transportation by the end user (to purchase the t-shirt).	Washing, drying, and ironing.	Transport to recycling plants or landfills.	Send to landfill.
INDIA	INDIA	INDIA	FROM INDIA TO EUROPE	EUROPE	EUROPE	EUROPE

Step 2: Inventory Analysis Comparative Scenario

Image based on source: **Ecochain**

https://ecochain.com/blog/life-cycle-assessment-lca-guide/

Raw Material Extraction	Distribution 1	Manufacturing	Distribution 2	Use of Product	Distribution 3	End of Life
Polyester is produced from petroleum derivatives. This process includes oil extraction, refining, and polymerization to create polyester fibers.	Transport of processed fibers to the garment factory.	The polyester fibers are spun and woven into fabrics. These fabrics are then dyed and sewn into t-shirts.	Transport from the factory to points of sale (distributors, retailers) mainly by cargo ship+ Transportation by the end user (to purchase the t-shirt).	Washing, drying, and ironing.	Transport to recycling plants or landfills.	Send to landfill.
CHINA	CHINA	CHINA	FROM CHINA TO EUROPE	EUROPE	EUROPE	EUROPE

Step 3: Scope of Analysis

· · · · · · · · · · · · · · · · · · ·		(·		
Raw Material Extraction	Distribution 1	Manufacturing	Distribution 2	Use of Product	Distribution 3	End of Life
Polyester is produced from petroleum derivatives. This process includes oil extraction, refining, and polymerization to create polyester fibers.	Transport of processed fibers to the garment factory.	The polyester fibers are spun and woven into fabrics. These fabrics are then dyed and sewn into t-shirts.	Transport from the factory to points of sale (distributors, retailers) mainly by cargo ship+ Transportation by the end user (to purchase the t-shirt).	Washing, drying, and ironing.	Transport to recycling plants or landfills.	Send to landfill.
INDIA	INDIA	INDIA	FROM INDIA TO EUROPE	EUROPE	EUROPE	EUROPE
Raw Material Extraction	Distribution 1	Manufacturing	Distribution 2	Use of Product	Distribution 3	End of Life
Obtaining seeds, planting, fertilizing, irrigating, pest protection, and harvesting the cotton.	Transport of cotton from the field to the processing site.	Processing the cotton, spinning, weaving, washing, dyeing, and sewing the t-shirt. + t-shirt is packaged and transported to stores.	Transport from the factory to points of sale (distributors, retailers) mainly by plane + Transportation by the end user (to purchase the t-shirt).	Washing, drying, and ironing.	Transport to recycling plants or landfills.	Send to landfill.
CHINA	CHINA	CHINA	FROM CHINA TO EUROPE	EUROPE	EUROPE	EUROPE
1						

Step 3: Scope of Analysis

Your innovation Vs
the comparative product

Raw materials

Manufacturing

Manufacturing: Spinning

Manufacturing: Dyeing

Transport of product to store

Step 4: Quantities

	Your innovation Vs the comparative product	Comparative Scenario: Quantities per <i>Functional Unit</i>	Your Innovation: Quantities per Functional Unit
Raw Material Extraction	Raw materials	50 gr of Polyester pellets per t-shirt	500 gr of harvested cotton per t-shirt
Manufacturing	Manufacturing: Spinning	Polyester spun by melt spinning 125 MJ/kg> 18.75 MJ/ t-shirt	Cotton spun by ring spinning 60MJ/kg> 9MJ/ t-shirt
Wanaraotamig	Manufacturing: Dyeing	50gr of dies> 7.5 gr/t- Shirt	30 gr of dies> 4.5 gr/t -shirt
Distribution 2	Transport of product to store	4: 8,800 tkm by cargo ship - -> <i>1.32tkm</i>	8,000km by plane> 1.2 tkm/t-shirt

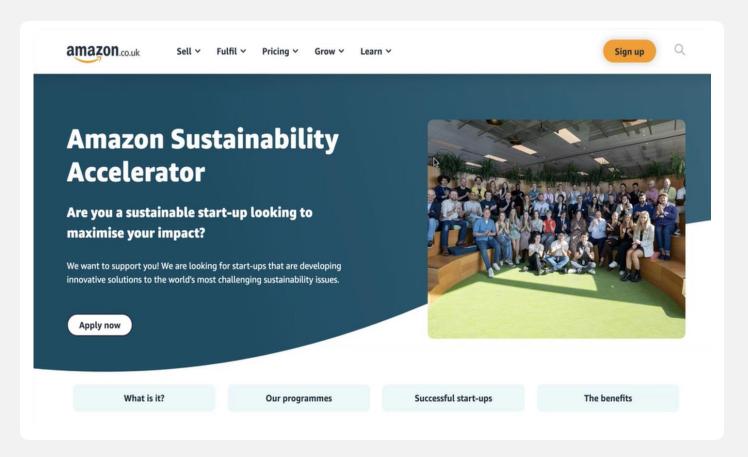
Step 4: Quantities & Emissions Factors

QUANTITIES PER INPUT

PHASES	COMPARATIVE SCENARIO: QUANTITIES PER FUNCTIONAL UNIT	YOUR INNOVATION: QUANTITIES PER FUNCTIONAL UNIT	
Raw materials	50 gr of Polyester pellets per t-shirt	500 gr of harvested cotton per t-shirt	
Manufacturin g: Spinning	Polyester spun by melt spinning 125 MJ/kg> 18.75 MJ/ t-shirt	Cotton spun by ring spinning 60MJ/kg> 9MJ/ t-shirt	
Manufacturin g: Dyeing	50gr of dies> 7.5 gr/t-Shirt	30 gr of dies> 4.5 gr/t-shirt	
Transport of product to store	4: 8,800 tkm by cargo ship> 1.32tkm	8,000km by plane> 1.2 tkm/t-shirt	

Search for GHG factor (IDEMAT database)

EMISSIONS PER INPUT


PHASES	COMPARATIVE SCENARIO: EMISSION PER FUNCTIONAL UNIT	YOUR INNOVATION: EMISSION PER FUNCTIONAL UNIT
Raw materials	Polyester = PET pellets <i>307.7kg of</i> <i>CO2e</i>	Bio-Cotton, Inida 191.5kg of CO2e
Manufacturing: Spinning	Electricity gas, EU, US, China 60% efficiency 3.2 kg of CO2e	Electricity Asia Pacific production 1.6 kg of CO2e
Manufacturing: Dyeing	Dyeing, with pollution, without materials input, India 23.4kg of CO2e	Dyeing, with pollution, without materials input, India 14kg of CO2e
Transport of product to store	Container ship (m3km) <i>0.03 kg of CO2</i> e	Air traffic intercontinental (m3km) 0.1 kg of CO2e

So what?

Why is impact measurement important for us?

GEOGRAPHIC FOCUS:

EUROPE

NUMBER OF VALIDATED AND POSITIVE RESULTS:

13

SECTOR FOCUS:

Cleantech (clean energy, Food & Agriculture, Clean Industry, Air & Environment)

NUMBER OF SUPPORTED STARTUP:

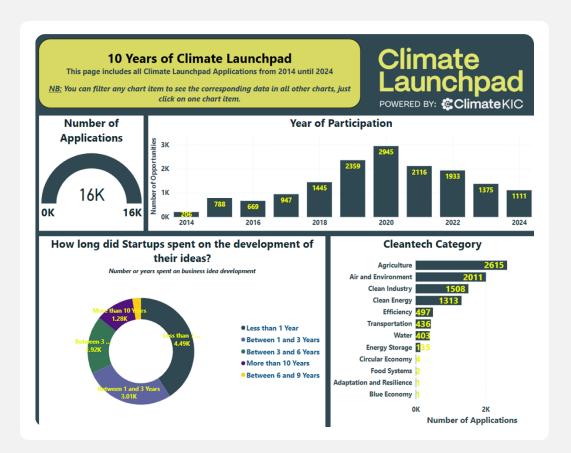
16

TOTAL NUMBER OF AVOIDED EMISSIONS:

2 9
Megatonnes
of avoided CO2eq

TOTAL INVESTMENT BY THE ACCELERATOR:

emissions


156,000€

Understanding the impact of our programmes

Amazon Sustainability Accelerator 2023

Why is impact measurement important for us?

Feedback

Please scan the following QR code or use the link to access the feedback questionnaire. We would be grateful if you could take 5 minutes to complete it, so that we can improve the learning experience.

https://t.ly/pdvl8